Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-(4-Methylphenyl)formamide

Min-Min Zhao

College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
Correspondence e-mail: chenxinyuanseu@yahoo.com.cn

Received 21 May 2012; accepted 28 May 2012
Key indicators: single-crystal X-ray study; $T=153 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.046 ; w R$ factor $=0.127$; data-to-parameter ratio $=17.1$.

In the title compound, $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}$, the amide group makes a dihedral of $32.35(1)^{\circ}$ with the benzene ring. In the crystal, pairs of strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into inversion dimers. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions further connect the molecules into chains along the a axis.

Related literature

For the structures and properties of related compounds, see: Tam et al. (2003); Omondi et al. (2005).

Experimental

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}$

$M_{r}=135.16$
Triclinic, $P \overline{1}$
$a=6.5511$ (11) \AA
$b=6.9192$ (12) \AA

$$
\begin{aligned}
c & =8.0265(17) \AA \\
\alpha & =93.730(1)^{\circ} \\
\beta & =102.780(1)^{\circ} \\
\gamma & =91.769(1)^{\circ} \\
V & =353.68(11) \AA^{3}
\end{aligned}
$$

$Z=2$

Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
Data collection
Rigaku Mercury2 diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)
$T_{\min }=0.910, T_{\max }=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046 \quad 92$ parameters
$w R\left(F^{2}\right)=0.127$
$S=0.90$
1570 reflections
$T=153 \mathrm{~K}$
$0.10 \times 0.05 \times 0.05 \mathrm{~mm}$

2597 measured reflections 1570 independent reflections 943 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.030$

Table 1
Hydrogen-bond geometry $\left(\mathrm{A}^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{i}}$	0.86	1.99	$2.849(2)$	172
$\mathrm{C} 7-\mathrm{H} 7 A \cdots 1^{\mathrm{ii}}$	0.93	2.63	$3.546(2)$	171

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $-x,-y+2,-z+1$.
Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by a start-up grant from Southeast University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2549).

References

Omondi, B., Fernandes, M. A., Layh, M., Levendis, D. C., Look, J. L. \& Mkwizu, T. S. P. (2005). CrystEngComm, 7, 690-700.
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tam, C. N., Cowan, J. A., Schultz, A. J., Young, V. G., Trouw, F. R. \& Sykes, A. G. (2003). J. Phys. Chem. B, 107, 7601-7606.

supplementary materials

Acta Cryst. (2012). E68, o1961 [doi:10.1107/S1600536812024300]

N -(4-Methylphenyl)formamide

Min-Min Zhao

Comment

N -(4-Chlorophenyl)formamide and N -(2,6-dichlorophenyl)formamide exhibit phase transitions under different thermal conditions from disordered model to ordered model (Tam et al., 2003; Omondi et al., 2005). Therefore, with the purpose of obtaining phase transition crystals of organic compounds, various similar organic molecules have been studied. The title compound has been synthesized to determine its crystal structure and dielectric properties. In this article, the synthesis and crystal structure of the title compound are reported.
In the title compound (Fig. 1), the amide group ($\mathrm{O} 1 / \mathrm{N} 1 / \mathrm{C} 1$) makes a dihedral of $32.35(1)^{\circ}$ with the benzene ring ($\mathrm{C} 2-$ C 7). In the crystal structure, the H atom bonded to the N atom is involved in a strong intermolecular $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O} 1$ hydrogen bond. In addition, weak $\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A} \cdots \mathrm{O} 1$ further stabilize the crystal structure. These H-bonding interactions connect the molecules into a 1D chain along the a-axis (Fig. 2 and Table 1). The bond lengths and bond angles in the title molecule agree very well with the corresponding bond distances and bond angles reported in closely related compounds (Tam et al., 2003; Omondi et al., 2005)

Experimental

A mixture of formic acid (30 mmol), 4-toluidine (10 mmol), $\mathrm{H}_{2} \mathrm{SO}_{4}(0.5 \mathrm{ml}$, molar concentration 98%) and ethanol (50 mL) in a 100 ml flask was stirred at 333 K for 10 h . Colourless crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with distances $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=$ 0.93 and $0.96 \AA$, for aryl and methyl H-atoms, respectively. The $U_{\text {iso }}(\mathrm{H})$ were allowed at $1.5 U_{\text {eq }}\left(\mathrm{C}\right.$ methyl) or $1.2 U_{\text {eq }}(\mathrm{N} / \mathrm{C}$ non-methyl).

Computing details

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figure 1
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 2

A view of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.

N-(4-Methylphenyl)formamide

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}$
$M_{r}=135.16$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.5511$ (11) \AA
$b=6.9192$ (12) \AA
$c=8.0265(17) \AA$

$$
\begin{aligned}
& \alpha=93.730(1)^{\circ} \\
& \beta=102.780(1)^{\circ} \\
& \gamma=91.769(1)^{\circ} \\
& V=353.68(11) \AA^{3} \\
& Z=2 \\
& F(000)=144 \\
& D_{\mathrm{x}}=1.269 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1570 reflections
$\theta=3.6-27.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$

Data collection

Rigaku Mercury2

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 13.6612 pixels mm^{-1}
CCD profile fitting scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
$T_{\min }=0.910, T_{\max }=1.000$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.127$
$S=0.90$
1570 reflections
92 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$T=153 \mathrm{~K}$
Block, colorless
$0.10 \times 0.05 \times 0.05 \mathrm{~mm}$

2597 measured reflections
1570 independent reflections
943 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.6^{\circ}$
$h=-8 \rightarrow 8$
$k=-7 \rightarrow 8$
$l=-10 \rightarrow 10$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0693 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.24 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.23436(18)$	$1.02875(15)$	$0.39355(14)$	$0.0308(3)$
N1	$0.3558(2)$	$0.80633(18)$	$0.58427(17)$	$0.0232(3)$
H1B	0.4814	0.8558	0.6014	0.028^{*}
C7	$0.1344(3)$	$0.6126(2)$	$0.7268(2)$	$0.0247(4)$
H7A	0.0295	0.7011	0.7049	0.030^{*}
C3	$0.4782(2)$	$0.5127(2)$	$0.7131(2)$	$0.0238(4)$
H3A	0.6044	0.5333	0.6805	0.029^{*}
C2	$0.3215(2)$	$0.6435(2)$	$0.67500(19)$	$0.0210(4)$
C4	$0.4474(3)$	$0.3510(2)$	$0.7997(2)$	$0.0249(4)$
H4A	0.5542	0.2648	0.8251	0.030^{*}
C1	$0.2053(3)$	$0.8876(2)$	$0.4739(2)$	$0.0251(4)$
H1A	0.0695	0.8344	0.4562	0.030^{*}

C6	$0.1060(3)$	$0.4493(2)$	$0.8112(2)$	$0.0261(4)$
H6A	-0.0204	0.4285	0.8434	0.031^{*}
C5	$0.2602(3)$	$0.3151(2)$	$0.8494(2)$	$0.0251(4)$
C8	$0.2248(3)$	$0.1390(2)$	$0.9420(2)$	$0.0359(5)$
H8A	0.0850	0.0854	0.8973	0.054^{*}
H8B	0.2434	0.1753	1.0620	0.054^{*}
H8C	0.3236	0.0439	0.9255	0.054^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0283(7)$	$0.0289(7)$	$0.0364(7)$	$0.0013(5)$	$0.0065(5)$	$0.0132(6)$
N1	$0.0220(7)$	$0.0227(7)$	$0.0251(7)$	$-0.0013(5)$	$0.0053(6)$	$0.0054(6)$
C7	$0.0244(9)$	$0.0237(8)$	$0.0267(9)$	$0.0018(7)$	$0.0075(7)$	$0.0018(7)$
C3	$0.0231(8)$	$0.0263(9)$	$0.0226(8)$	$-0.0012(7)$	$0.0066(7)$	$0.0017(7)$
C2	$0.0258(9)$	$0.0177(8)$	$0.0189(8)$	$-0.0014(6)$	$0.0043(6)$	$0.0011(6)$
C4	$0.0268(9)$	$0.0234(9)$	$0.0238(9)$	$0.0030(7)$	$0.0039(7)$	$0.0027(7)$
C1	$0.0226(9)$	$0.0255(9)$	$0.0279(9)$	$0.0018(7)$	$0.0066(7)$	$0.0029(7)$
C6	$0.0251(9)$	$0.0295(9)$	$0.0248(9)$	$-0.0042(7)$	$0.0087(7)$	$0.0013(7)$
C5	$0.0322(10)$	$0.0215(8)$	$0.0202(8)$	$-0.0045(7)$	$0.0041(7)$	$0.0015(7)$
C8	$0.0412(12)$	$0.0317(10)$	$0.0355(11)$	$-0.0041(8)$	$0.0087(9)$	$0.0111(8)$

Geometric parameters ($\AA,{ }^{\circ}$)

O1-C1	1.2369 (18)	C4-C5	1.391 (2)
N1-C1	1.3364 (19)	C4-H4A	0.9300
N1-C2	1.4189 (19)	C1-H1A	0.9300
N1-H1B	0.8600	C6-C5	1.391 (2)
C7-C6	1.383 (2)	C6-H6A	0.9300
C7-C2	1.393 (2)	C5-C8	1.506 (2)
C7-H7A	0.9300	C8-H8A	0.9600
C3-C2	1.387 (2)	C8-H8B	0.9600
C3-C4	1.387 (2)	C8-H8C	0.9600
C3-H3A	0.9300		
C1-N1-C2	124.15 (14)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	124.50 (15)
C1-N1-H1B	117.9	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	117.8
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	117.9	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	117.8
C6-C7-C2	119.50 (15)	C7-C6-C5	122.15 (15)
C6-C7-H7A	120.3	C7-C6-H6A	118.9
C2-C7-H7A	120.3	C5-C6-H6A	118.9
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	120.16 (15)	C6-C5-C4	117.38 (14)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.9	C6-C5-C8	120.91 (15)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.9	C4-C5-C8	121.71 (15)
C3-C2-C7	119.37 (14)	C5-C8-H8A	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	119.07 (14)	C5-C8- H 8 B	109.5
C7- $22-\mathrm{N} 1$	121.56 (14)	H8A-C8-H8B	109.5
C3-C4-C5	121.42 (15)	C5-C8- H 8 C	109.5
C3-C4-H4A	119.3	H8A-C8-H8C	109.5
C5-C4-H4A	119.3	H8B-C8-H8C	109.5

supplementary materials

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 B \cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	1.99	$2.849(2)$	172
$\mathrm{C} 7 — \mathrm{H} 7 A \cdots 1^{\mathrm{ii}}$	0.93	2.63	$3.546(2)$	171

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $-x,-y+2,-z+1$.

